Browsing by Author "Gwakisa, Paul S."
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item Assessing risk factors for Trypanosome infections in cattle in wildlife interface areas in Northern Tanzania(Journal of Infectious Diseases and Epidemiology, 2019) Ngongolo, Kelvin; Estes, Anna B.; Hudson, Peter J.; Gwakisa, Paul S.Trypanosomosis is a vector-borne, tropical disease that causes mortality and morbidity in livestock and humans. In this study, we investigated the risk factors for trypanosome infection in cattle in the Maasai Steppe of northern Tanzania. We assessed the influence of age, sex, herd size and history of treatment against trypanosomosis as risk factors of trypanosome infection. Cattle blood samples were collected from 150 cattle in three villages in the vicinity of Tarangire National Park, which acts as a reservoir of tsetse flies, the trypanosome vector. Parasite species were identified using a nested Polymerase Chain Reaction (n-PCR). Smaller herd sizes, young age (1-2 years), and male sex significantly increased the risk of trypanosome infections. Efforts to control trypanosome infection should be strategically based on location and season while considering age, treatment and herd size as risk factors.Item Climate change and variability perceptions and adaptations of pastoralists’ communities in the Maasai Steppe, Tanzania(Elsevier, 2021) Nnko, Happiness J.; Gwakisa, Paul S.; Ngonyoka, Anibariki; Estes, AnnaDesigning adaptation strategies to climate change and variability impacts requires an understanding of people's perception of climate change. Despite Maasai of the Maasai Steppe being vulnerable to climate change, how communities understood and interpret climate change have received little attention. A cross-sectional study of community's perceptions of climate change and adaptation was conducted. A multinomial logistic regression in R 3.3.2 was used to analyze the determinants of adaptation decisions at a household level. Perceptions of climate change was based on experience of increasing temperature (94.4%, n = 136), insufficient rainfall with spatial-temporal variation (88.2%, n = 136) and frequent dry spell in recent years (91.2%, n = 136). Impacts of these changes were drop of livestock productivity (85.7%, n = 136), death of livestock (11.9%, n = 136) and conflicts (3.4%, n = 136). Although trekking livestock to ronjo and livestock based donation from relatives were commonly used to moderate adverse impacts of drought, at the 95% CI, at least primary education influenced household decision to move to ronjo (β = 2.5, SE = 1.2, p = 0.045) and donation (β = 3.1, SE = 1.4, p = 0.029) when compared to not adapting. Moreover, few livelihood assets observed in this study may limit perceptions and even adaptations of Maasai communities.Item Influence of land cover and host species on trypanosome infection in cattle and its socio-economic impacts to pastoralists of the Maasai Steppe, Tanzania.(Journal of Infectious Diseases and Epidemiology, 2020) Ngongolo, Kelvin; Shirima, Gabriel; Mpolya, Emmanuel A; Estes, Anna B; Hudson, Peter J.; Gwakisa, Paul S.Introduction: Trypanosome infections result into trypanosomosis in cattle and this is an infection detrimental to pastoralist income. The patterns of transmission are thought to be influenced by ecological factors including wildlife and land cover. We assessed the influence of the relative abundance of wildlife and land cover (cultivation and habitat type) on the presence of trypanosome infections in replicated cattle herds of the Maasai Steppe. Methodology: We undertook a cohort field study in three villages of the Maasai Steppe: Sukuro, Kimotorok and Oltukai. The study took place in July 2017 and October 2017 and utilized 50 cattle from each village. Pastoralists were asked questions during each visit when blood sampled were taken to seek their viewpoint on the relative abundance of wildlife, habitat types and cultivation observed in the areas their cattle grazed. In addition, the percentage cover of cultivated land and habitat types in the grazing areas were determined during field visits and participatory mapping with pastoralists. A systematic review was used to understand the socio-economic importance of trypanosomosis. The species of trypanosomes in cattle were identified using nested Polymerase chain reaction (n-PCR). Results: There was a significant and positive association between the presence of trypanosome infection and the abundance of wildlife within grazing areas, in particular the abundance of buffaloes (Odd Ratio > 1, P = 0.038, 95% CI 1.26 to 1.38) when cattle grazed in woodland habitats. Cultivation on grazing areas had a negative association with the presence of trypanosome infections (R < 1, P = 0.001, 95% CI 0.0614 to 0.0986) in cattle but this varied between villages. A systematic review showed that trypanosomosis had socio-economic impacts such as loss of income, reduced quality, and quantity of livestock products, management cost, and inadequate provisions of socio-services and potential zoonotic transmission to humans. Conclusion & recommendations: The socio-economic impacts of trypanosomosis will continue to be a challenge to pastoralists when cattle are grazed close to wildlife areas which are infested with tsetse fly habitats. Control strategies for trypanosome infection in cattle on the Maasai Steppe should consider the interaction of cattle with ecological factors.Item Influence of seasonal cattle movement on prevalence o f trypano-some infections in cattle in the Maasai Steppe(ClinMed International Library, 2019) Ngongolo, Kelvin; Estes, Anna B.; Hudson, Peter J.; Gwakisa, Paul S.Animal African Trypanosomosis is a Neglected Tropical Disease with significant impacts to pastoral community livelihoods. Our study sought to determine the influence of seasonal cattle movements on the prevalence of trypanosome infections in cattle in the pastoral areas of the Maasai Steppe. Identification of spatial and temporal dynamics of trypanosome infections in cattle is essential for designing effective control strategies. To identify potential hotspots of trypanosome transmission, we worked with 5 pastoralists in each of 3 villages in the Maasai Steppe of northern Tanzania, and consecutively sampled 10 of each of their cattle in 3 periods, covering both wet and dry season grazing ranges (July 2017 to January 2018). Each time blood was collected from the cattle, a prophylactic dose of diminazene aceturate was administered to clear any parasites acquired in the previous 3 months. We then used participatory mapping techniques to identify the areas where the pastoralists had grazed their herds since the last sampling period, and interviewed them about any disease control methods they practice. Trypanosome infections in the sampled cattle blood were detected using nested polymerase chain reaction with ITS-1 primers. The overall prevalence of trypanosome infections across all sample periods and villages was 12%, though this varied distinctly by season and grazing area. Prevalence in July 2017 (19.33%) was significantly higher than prevalence in October 2017 (2%) (p < 0.05). A total of 45 grazing areas were identified and cattle acquired trypanosome infections in almost half of these (n =21). Targeted awareness on seasonality and hotspot areas of trypanosome infections will help Maasai pastoralists to plan movement of their cattle strategically to avoid disease risk. These results also suggest enhanced control strategies for Trypanosomosis during the months of the year when cattle are moved further from homesteads to graze in hotspot areas.Item Molecular prevalence of trypanosome infections in cattle and tsetse flies in the Maasai Steppe, northern Tanzania(BioMed Central, 2017) Simwango, Mary; Ngonyoka, Anibariki; Nnko, Happiness J.; Salekwa, Linda P.; Ole-Neselle, Moses; Kimera, Sharadhuli I.; Gwakisa, Paul S.Background: African trypanosomosis is a disease of public health and economic importance that poses a major threat to the livelihoods of people living in the Maasai Steppe, where there is a significant interaction between people, livestock and wildlife. The vulnerability of the Maasai people to the disease is enhanced by the interaction of their cattle, which act as vehicles for trypanosomes, and tsetse flies close to wildlife in protected areas. This study was aimed at identification of trypanosome infections circulating in cattle and tsetse flies in order to understand their distribution and prevalence in livestock/wildlife interface areas in the Maasai Steppe. Methods: A total of 1002 cattle and 886 tsetse flies were sampled from June 2015 to February 2016 in five villages and PCR was conducted to amplify the internal transcribed spacer 1 (ITS1) from trypanosomes. All Trypanosome brucei positive samples were further tested for the presence of the serum resistance-associated (SRA) gene found in human-infective trypanosomes using the SRA-LAMP technique. Results: The overall prevalence of trypanosome infections was 17.2% in cattle and 3.4% in tsetse flies. Using a nested PCR, prevalence and abundance of five trypanosome species, Trypanosome vivax, T. brucei, T. simiae, T. theileri and T. congolense, were determined, which varied with season and location. The highest prevalence of the identified trypanosome species was recorded at the end of wet season with an exception of T. brucei which was high at the beginning of the wet season. No human-infective trypanosomes were detected in both cattle and tsetse fly DNA. Conclusions: This study confirms that seasonality and location have a significant contribution to the prevalence of trypanosome species in both mammalian and vector hosts. These results are important for designing of community-wide vector and disease control interventions and planning of sustainable regimes for reduction of the burden of trypanosomosis in endemic pastoral areas, such as the Maasai Steppe in northern Tanzania.Item Pastoralists’ vulnerability to trypanosomiasis in maasai steppe(Springer, 2017) Nnko, Happiness J.; Gwakisa, Paul S.; Ngonyoka, Anibariki; Saigilu, Meshack; Ole-Neselle, Moses; Kisoka, William; Sindato, Calvin; Estes, AnnaTrypanosomiasis is a neglected tropical disease of both livestock and humans. Although pastoral communities of the Maasai Steppe have been able to adapt to trypanosomiasis in the past, their traditional strategies are now constrained by changes in climate and land regimes that affect their ability to move with their herds and continually shape the communities’ vulnerability to trypanosomiasis. Despite these constraints, information on communities’ vulnerability and adaptive capacity to trypanosomiasis is limited. A cross-sectional study was therefore conducted in Simanjiro and Monduli districts of the Maasai Steppe to establish pastoralists’ vulnerability to animal trypanosomiasis and factors that determined their adaptation strategies. A weighted overlay approach in ArcGIS 10.4 was used to analyze vulnerability levels while binomial and multinomial logistic regressions in R 3.3.2 were used to analyze the determinants of adaptation. Simanjiro district was the most vulnerable to trypanosomiasis. The majority (87.5%, n = 136) of the respondents were aware of trypanosomiasis in animals, but only 7.4% (n = 136) knew about the human form of the disease. Reported impacts of animal trypanosomiasis were low milk production (95.6%, n = 136), death of livestock (96.8%, n = 136) and emaciation of animals (99.9%, n = 136). Crop farming was the most frequently reported animal trypanosomiasis adaptation strategy (66%, n = 136). At a 95% confidence interval, accessibility to livestock extension services (β = 7.61, SE = 3.28, df = 135, P = 0.02), years of livestock keeping experience (β = 6.17, SE = 1.95, df = 135, P = 0.001), number of cattle owned (β = 5.85, SE = 2.70, df = 135, P = 0.03) and membership in associations (β = − 4.11, SE = 1.79, df = 135, P = 0.02) had a significant impact on the probability of adapting to animal trypanosomiasisItem Patterns of tsetse abundance and trypanosome infection rates among habitats of surveyed villages in Maasai steppe of northern Tanzania(BioMed Central, 2017) Ngonyoka, Anibariki; Gwakisa, Paul S.; Estes, Anna B.; Salekwa, Linda P.; Nnko, Happiness J.; Hudson, Peter J.; Cattadori, Isabella M.Background: Changes of land cover modify the characteristics of habitat, host-vector interaction and consequently infection rates of disease causing agents. In this paper, we report variations in tsetse distribution patterns, abundance and infection rates in relation to habitat types and age in the Maasai Steppe of northern Tanzania. In Africa, Tsetse-transmitted trypanosomiasis negatively impacted human life where about 40 million people are at risk of contracting the disease with dramatic socio-economic consequences, for instance, loss of livestock, animal productivity, and manpower. Methods: We trapped tsetse flies in dry and wet seasons between October 2014 and May 2015 in selected habitats across four villages: Emboreet, Loiborsireet, Kimotorok and Oltukai adjacent to protected areas. Data collected include number and species of tsetse flies caught in baited traps, PCR identification of trypanosome species and extraction of monitored Normalized Difference Vegetation Index (NDVI) data from Moderate Resolution Imaging Spectrometer (MODIS). Results: Our findings demonstrate the variation of tsetse fly species abundance and infection rates among habitats in surveyed villages in relation to NDVI and host abundance. Results have shown higher tsetse fly abundance in Acacia-swampy ecotone and riverine habitats for Emboreet and other villages, respectively. Tsetse abundance was inconsistent among habitats in different villages. Emboreet was highly infested with Glossina swynnertoni (68%) in ecotone and swampy habitats followed by G. morsitans (28%) and G. pallidipes (4%) in riverine habitat. In the remaining villages, the dominant tsetse fly species by 95% was G. pallidipes in all habitats. Trypanosoma vivax was the most prevalent species in all infected flies (95%) with few observations of co-infections (with T. congolense or T. brucei). Conclusions: The findings of this study provide a framework to mapping hotspots of tsetse infestation and trypanosomiasis infection and enhance the communities to plan for effective control of trypanosomiasis.Item Seasonal variation of tsetse fly species abundance and prevalence of trypanosomes in the Maasai Steppe, Tanzania.(PupMed, 2017) Nnko, Happiness J.; Ngonyoka, Anibariki; Salekwa, Linda; Estes, Anna B.; Hudson, Peter J.; Gwakisa, Paul S.; Cattadori, Isabella M.Tsetse flies, the vectors of trypanosomiasis, represent a threat to public health and economy in sub-Saharan Africa. Despite these concerns, information on temporal and spatial dynamics of tsetse and trypanosomes remain limited and may be a reason that control strategies are less effective. The current study assessed the temporal variation of the relative abundance of tsetse fly species and trypanosome prevalence in relation to climate in the Maasai Steppe of Tanzania in 2014-2015. Tsetse flies were captured using odor-baited Epsilon traps deployed in ten sites selected through random subsampling of the major vegetation types in the area. Fly species were identified morphologically and trypanosome species classified using PCR. The climate dataset was acquired from the African Flood and Drought Monitor repository. Three species of tsetse flies were identified: G. swynnertoni (70.8%), G. m. morsitans (23.4%), and G.pallidipes (5.8%). All species showed monthly changes in abundance with most of the flies collected in July. The relative abundance of G. m. morsitans and G. swynnertoni was negatively correlated with maximum and minimum temperature, respectively. Three trypanosome species were recorded: T. vivax (82.1%), T. brucei (8.93%), and T. congolense (3.57%). The peak of trypanosome infections in the flies was found in October and was three months after the tsetse abundance peak; prevalence was negatively correlated with tsetse abundance. A strong positive relationship was found between trypanosome prevalence and temperature. In conclusion, we find that trypanosome prevalence is dependent on fly availability, and temperature drives both tsetse fly relativeItem Variation of tsetse fly abundance in relation to habitat and host presence in the Maasai Steppe, Tanzania(Wiley Online Library, 2017) Ngonyoka, Anibariki; Gwakisa, Paul S.; Estes, Anna B.; Nnko, Happiness J.; Hudson, Peter J.; Cattadori, Isabella M.Human activities modify ecosystem structure and function and can also alter the vital rates of vectors and thus the risk of infection with vector‐borne diseases. In the Maasai Steppe ecosystem of northern Tanzania, local communities depend on livestock and suitable pasture that is shared with wildlife, which can increase tsetse abundance and the risk of trypanosomiasis. We monitored the monthly tsetse fly abundance adjacent to Tarangire National Park in 2014–2015 using geo‐referenced, baited epsilon traps. We examined the effect of habitat types and vegetation greenness (NDVI) on the relative abundance of tsetse fly species. Host availability (livestock and wildlife) was also recorded within 100×100 m of each trap site. The highest tsetse abundance was found in the ecotone between Acacia‐Commiphora woodland and grassland, and the lowest in riverine woodland. Glossina swynnertoni was the most abundant species (68%) trapped throughout the entire study, while G. pallidipes was the least common (4%). Relative species abundance was negatively associated with NDVI, with greatest abundance observed in the dry season. The relationship with the abundance of wildlife and livestock was more complex, as we found positive and negative associations depending on the host and fly species. While habitat is important for tsetse distribution, hosts also play a critical role in affecting fly abundance and, potentially, trypanosomiasis risk.