Numerical solutions to elliptic differential equations - finite difference approach.

dc.contributor.authorMchette, Jacob Clavery
dc.date.accessioned2019-08-19T07:01:46Z
dc.date.available2019-08-19T07:01:46Z
dc.date.issued2016
dc.descriptionDissertation (MSc Mathematics)en_US
dc.description.abstractThis dissertation contains materials on numerical solutions based on elliptic differential equations only appropriate for senior level undergraduate or beginning level graduate students. The reader based on this dissertation should have had introductory courses in Calculus, linear algebra and general numerical analysis. A formal course in ordinary or partial differential equations would be useful. In our study, it should be understood that, there are many procedures that come under the name numerical methods. We shall see how the very popular finite difference methods can be used to solve elliptic equations. To begin, we introduce the idea of finite differences. We then show how to use these finite differences to solve a Dirichlet Problem inside a square. However, the numerical algorithm for solving the Dirichlet Problem (Liebmann’s method ) has been included. Moreover, systems of algebraic equations have been solved numerically by an iterative process in order to obtain an approximate solution to the partial differential equation. The iterative methods such as Gauss Seidel iteration method, Gauss Jacobi iteration method and Liebmann iteration method have been discussed. It is also pointed out that the reader will find how numerical solutions to elliptic differential equations are applicable in daily life experience.en_US
dc.identifier.citationMchette, J. C. (2016). Numerical solutions to elliptic differential equations - finite difference approach. Dodoma: The University of Dodomaen_US
dc.identifier.urihttp://hdl.handle.net/20.500.12661/831
dc.publisherThe University of Dodomaen_US
dc.subjectElliptic differential equationsen_US
dc.subjectNumerical solutionsen_US
dc.subjectFinite difference methodsen_US
dc.subjectGeneral numerical analysisen_US
dc.subjectElliptic equation solutionsen_US
dc.subjectNumerical equationsen_US
dc.titleNumerical solutions to elliptic differential equations - finite difference approach.en_US
dc.typeDissertationen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
MCHETTE,JACOB CLAVERY.pdf
Size:
1.46 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: