Finite element method with damping control multi-step methods approach to one boundary value problem for the wave equation.

Loading...
Thumbnail Image
Date
2016
Journal Title
Journal ISSN
Volume Title
Publisher
The University of Dodoma
Abstract
Over the previous years finite element method (FEM) has become a powerfully tool to approximate solution of differential equations and prove their existence. The purpose of this research is to introduce and describe a number of the finite element method (FEM) technique applied to problems for partial differential equations (PDEs) with special attentions to the hyperbolic problems in case of wave and damped wave equations. Another aim is to study the one boundary value problem (BVP) for the wave equation and apply damping control multi-step methods integrated into the FEM such as the Newmark method, Backward difference method (BDF) and Hilber-Hughes-Taylor Method (HHT). The ordinary differential equation (ODE) system obtained after applying FEM are then solved by these multi-step methods, where by the BDF-Method and the HHT-Method are second order precision, unconditionally stable and able to dissipate high-modes for some values of the parameters.
Description
Dissertation (MSc Mathematics)
Keywords
Damped wave equation, Damping control multi-step methods, Hyperbolic problems, Partial differential equation, Finite element method technique, Wave equation problem, One boundary value problem
Citation
Leandry, L. (2016). Finite element method with damping control multi-step methods approach to one boundary value problem for the wave equation. Dodoma: The University of Dodoma.