Browsing by Author "Mutegoa, E."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Effect of mixing ratios of natural inorganic additives in removing ammonia and sulfide in the liquid phase during anaerobic digestion of slaughterhouse waste(Elsevier, 2021) Mutegoa, E.; Malima, N.M.; Hilonga, Askwar; Njau, K.N.In this study, the efficacy of inorganic additives in the removal of total ammonia nitrogen (TAN) and sulfide in the aqueous phase of slaughterhouse waste undergoing anaerobic digestion in the batch reactor was investigated. A mixture of natural inorganic additives processed from the anthill and red rock soil samples collected from Arusha, Tanzania were used as adsorbents in different ratios. These materials were chosen in regard to their abundance in the local environment, surface properties, and elemental composition. Before analysis, the materials were pulverized and calcined at 700 and 900 °C for 2 h in a furnace and then sieved to 250 μm fine particle size. XRD analysis revealed that the anthill soil sample is endowed with major mineral phases of quartz and hematite while red rock soil contains albite, pyroxene, and quartz as predominant phases. The anthill and red rock soil samples calcined at 900 °C displayed higher BET surface areas of 815.35 and 852.35 m2/g, respectively. The mixture of anthill soil and red rock soil in a ratio of 3:1 had a higher TAN removal efficiency of 92% at a contact time of 30 min compared to other ratios. On the other hand, a ratio of 1:2 showed a higher sulfide removal efficiency of 79% at a contact time of 60 min. Adsorption isotherm studies revealed that the Jovanovich model fitted better to the experimental data than the Langmuir and Freundlich models. The results demonstrated further that inorganic additives have a synergistic effect on stimulating methanogenesis as well as eliminating ammonia and sulfide during anaerobic digestion of slaughterhouse waste. Our findings demonstrate that anthill and red rock soils can be exploited as affordable, ecofriendly, and efficient adsorbents for mitigation of TAN and sulfide from the liquid phase and sustenance of methanogenesis.Item Extraction, phytochemistry, nutritional, and therapeutical potentials of rice bran oil: a review(Elsevier, 2023) Sahini, M. G.; Mutegoa, E.Background Rice is the third-most-produced crop in the world after corn and sugarcane, and due to its widespread production, its byproduct, rice bran, is widely available. One option to add value to this agricultural waste is by utilizing the potential phytochemicals in rice bran oil (RBO). Rice bran oil contains vital chemicals with medicinal and nutritional benefits. This paper examines the numerous ways that rice bran oil is extracted, the various phytochemicals that are present, as well as their potential for use in nutrition and medicine. Method A review of literatures released from 1996 to 2023 was done, with just one more item of literature from 1973. The search was performed in various online platforms such as Google Scholar, PubMed, Science Direct, Springer, Research4Life, Web of Science, SciFinder, Science Open etc. The more recent literatures were given more consideration, and the older literatures were only taken into account when they were absolutely essential in light of the subject at hand. Results Literature survey has revealed that the essential phytochemical components of RBO includes phenolic acids, flavonoids, γ-oryzanol and ferulic acids and vitamin E which constitutes tocopherols and tocotrienols as well as other unique fatty acids. Numerous therapeutical potentials, including antioxidant, anti-inflammatory, antidiabetic, and anticancer activities have been evidenced, thanks to these significant phytochemical ingredients. Additionally, numerous nutritional potentials of RBO have been researched and reported. Conclusions This review consolidates information on the developments in RBO extraction techniques, phytochemical components, and their nutritional and medicinal benefits. Also included are the approach towards processing of rice bran. Considering the abundance and potential of this agrowaste, the use of RBO based phytochemicals for nutritional and therapeutic purpose is worthy pursuing further.