Browsing by Author "Okullo, Aldo"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Optimization of biodiesel production from jatropha oil(Trans Tech Publications Ltd., 2010) Okullo, Aldo; Temu, A.K.; Ntalikwa, J.W.; Ogwok, P.The most important factors that influence biodiesel production are temperature, molar ratio, catalyst amount, time and degree of agitation. This study investigated the effects of temperature, molar ratio and degree of agitation and their interactions on the yield and purity of biodiesel produced from Jatropha oil. Factorial design and response surface methodology (RSM) were used to predict yield and purity of biodiesel as functions of the three variables. Interactions of all the factors were found to be significant on both yield and purity responses. Temperature and molar ratio main effects were found to be significant on the yield whereas only temperature main effect was significant on the purity of the biodiesel. The optimum conditions of operations were; temperature of 54 oC, molar ratio of methanol to oil of 6:1 and stirring speed of 660 rpm. Using these conditions, biodiesel yield of 95% (wt) was obtained with a purity of 97%. This model can be used to predict the yield and purity of biodiesel from jatropha oil within the ranges of temperature (30 – 60oC), stirring rate (300 -900 rpm), and molar ratio (3 – 9 mol/mol) studied.Item Physico-chemical properties of biodiesel from jatropha and castor oils(Gazi University, 2012) Okullo, Aldo; Temu, A. K.; Ogwok, P.; Ntalikwa, J. W.Biodiesel is becoming prominent among the alternatives to conventional petro-diesel due to economic, environmental and social factors. The quality of biodiesel is influenced by the nature of feedstock and the production processes employed. High amounts of free fatty acids (FFA) in the feedstock are known to be detrimental to the quality of biodiesel. In addition, oils with compounds containing hydroxyl groups possess high viscosity due to hydrogen bonding. American Standards and Testing Materials, (ASTM D 6751) recommends FFA content of not more than 0.5% in biodiesel and a viscosity of less than 6 mm2/s. The physico-chemical properties of jatropha and castor oils were assessed for their potential in biodiesel. The properties of jatropha and castor oils were compared with those of palm from literature while that of biodiesel were compared with petro-diesel, ASTM and European Standards (EN14214). Results showed that high amounts of FFA in oils produced low quality biodiesel while neutralized oils with low amounts of FFA produced high quality biodiesel. The quality of biodiesel from jatropha and castor oils was improved greatly by neutralising the crude oils