Browsing by Author "Satoh, Y."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item G-protein activation enhances Ca+2-dependent lipid secretion of the rat Harderian gland(Springer-Verlag, 1995) Gesase, Ainory P.; Satoh, Y.; Ono, K.We studied the secretory mechanism of the Harderian gland of rats. After perfusion with HEPES-buffered Ringer's solution containing NaF (10 mM) with AlCl3 (10 μM), a G-protein activator, the glandular cells of the Harderian gland showed massive exocytosis and apocrine-like protrusions on the luminal surface. Some of the secretory vacuoles aggregated within the cytoplasm, and large vacuoles were formed. Contraction of the myoepithelial cells covering the glandular endpieces caused a narrowing of the glandular lumina, which contained cytoplasmic fragments, and deformation of the basal contour of the glandular end-pieces. The basal regions of the glandular cells also bulged between the myoepithelial cells. Secretory vacuoles were also discharged to the lateral cell surface, and the intercellular spaces were dilated. The enhanced secretory activities of the glandular cells and the contraction of the myoepithelial cells were similar to those in rats stimulated with 10 μM carbachol (CCh). However, dilatation of the endoplasmic reticulum in glandular cells (type A cells), which leads to the formation of small vesicles, was observed in those glands stimulated by NaF+AlCl3, but not in those stimulated by CCh. Removal of Ca+2 from the perfusing HR or addition of EDTA (0.5 mM) diminished and inhibited NaF+AlCl3- or CCh-enhanced secretory activity of the glandular cells and also allayed the deformation of glandular cells caused by myoepithelial cell contraction. The present results demonstrate the involvement of G-proteins and Ca2+-influx in the lipid secretion of glandular cells and in the contraction of myoepithelial cells of the Harderian gland in rats.Item Sexual differences and effects of castration on secretory mode and intracellular calcium ion dynamics of golden hamster Harderian gland(Springer, 2001) Gesase, A. P; Satoh, Y.The aim of the present work was to study the sexual differences in secretory mechanisms and intracellular calcium ion dynamics in the Harderian gland of the golden hamster. In both sexes the Harderian gland consisted of small and large lobes. In the intact control male glands the secretory portions of both lobes showed wide lumina that contained secretory material and cytoplasmic fragments, suggestive of the occurrence of exocytosis and apocrine secretion. After perfusion with HEPES-buffered Ringer's solution containing 10 µM carbamylcholine (CCh), the glandular cells showed features of enhanced secretion and a rise in intracellular calcium concentration ([Ca2+]i). In the intact control female gland the lumina of most secretory portions in the large lobe contained porphyrin accretions, and exocytosis was the sole secretory mechanism. Stimulation of the large lobe with 10 µM CCh did not raise [Ca2+]i or cause enhanced secretion. The small lobe in females resembled the male gland in secretory functions, and CCh administration caused enhanced secretion and a rise in [Ca2+]i. Castration in males abolished apocrine secretion; exocytosis became the sole secretory mechanism, and stimulation of the glandular cells with CCh did not cause enhanced secretion or induce a rise in [Ca2+]i. To the contrary, in females, castration restored apocrine secretion and CCh administration caused enhanced secretion and a rise in [Ca2+]i. Castration did not affect the secretory mechanisms and the effect of CCh on the glandular cells in the small lobes of both male and female glands. The present study points to the possibility that sex hormones may control the functioning or expression of muscarinic receptors in the Harderian gland of the golden hamster.