Browsing by Author "Shayo, A."
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Identification of large variation in pfcrt, pfmdr-1 and pfubp-1 markers in Plasmodium falciparum isolates from Ethiopia and Tanzania(Springer, 2015) Golassa, L.; Kamugisha, E.; Ishengoma, D. S.; Baraka, V.; Shayo, A.; Baliraine, F. N.; Swedberg, G.Plasmodium falciparum resistance to anti-malarials is a major drawback in effective malaria control and elimination globally. Artemisinin-combination therapy (ACT) is currently the key first-line treatment for uncomplicated falciparum malaria. Plasmodium falciparum genetic signatures at pfmdr-1, pfcrt, and pfubp-1 loci are known to modulate in vivo and in vitro parasite response to ACT. The objective of this study was to assess the distribution of these resistance gene markers in isolates collected from different malaria transmission intensity in Ethiopia and Tanzania Plasmodium falciparum clinical isolates were collected from different regions of Ethiopia and Tanzania. Genetic polymorphisms in the genes pfcrt, pfmdr-1 and pfubp-1 were analysed by PCR and sequencing. Frequencies of the different alleles in the three genes were compared within and between regions, and between the two countries. The majority of the isolates from Ethiopia were mutant for the pfcrt 76 and wild-type for pfmdr-1 86. In contrast, the majority of the Tanzanian samples were wild-type for both pfcrt and pfmdr-1 loci. Analysis of a variable linker region in pfmdr-1 showed substantial variation in isolates from Tanzania as compared to Ethiopian isolates that had minimal variation. Direct sequencing of the pfubp-1 region showed that 92.8% (26/28) of the Ethiopian isolates had identical genome sequence with the wild type reference P. falciparum strain 3D7. Of 42 isolates from Tanzania, only 13 (30.9%) had identical genome sequences with 3D7. In the Tanzanian samples, 10 variant haplotypes were identified. The majority of Ethiopian isolates carried the main marker for chloroquine (CQ) resistance, while the majority of the samples from Tanzania carried markers for CQ susceptibility. Polymorphic genes showed substantially more variation in Tanzanian isolates. The low variability in the polymorphic region of pfmdr-1 in Ethiopia may be a consequence of low transmission intensity as compared to high transmission intensity and large variations in TanzaniaItem Therapeutic efficacy and safety of artemether-lumefantrine for the treatment of uncomplicated falciparum malaria in North-Eastern Tanzania(Springer, 2014) Shayo, A.; Mandara, C. I.; Shahada, F.; Buza, J.; Lemnge, M. M.; Ishengoma, D. S.The World Health Organization recommends that regular efficacy monitoring should be undertaken by all malaria endemic countries that have deployed artemisinin combination therapy (ACT). Although ACT is still efficacious for treatment of uncomplicated malaria, artemisinin resistance has been reported in South East Asia suggesting that surveillance needs to be intensified by all malaria endemic countries. This study assessed the efficacy and safety of artemether-lumefantrine (AL) for the treatment of uncomplicated falciparum malaria in Muheza district of north-eastern Tanzania, an area where the transmission has significantly declined in recent years. Eighty eight children (aged 6 months to 10 years) with uncomplicated falciparum malaria were recruited into the study. The patients were treated with standard doses of AL and followed up for 28 days. The primary end point was parasitological cure on day 28 while the secondary end points included: improvement in haemoglobin levels and occurrence, and severity of adverse events. A total of 163 febrile patients were screened, out of which 88 patients (56 under-fives and 32 aged ≥5 years) were enrolled and 79 (89.8%) completed the 28 days of follow-up. There were no cases of early treatment failure whilst 40 (78.4%) under-fives and 21(75.0%) older children had adequate clinical and parasitological response (ACPR) before PCR correction. Late clinical failure was seen in 5.6% (n = 51) and 3.6% (n = 28) of the under-fives and older children respectively; while 15.7% and 21.6% had late parasitological failure in the two groups respectively. After PCR correction, ACPR was 100% in both groups. Reported adverse events included cough (49.7%), fever (20.2%), abdominal pain (10.1%), diarrhoea (1.3%), headache (1.3%) and skin rashes (1.3%). This study showed that AL was safe, well-tolerated and efficacious for treatment of uncomplicated falciparum malaria. Since Muheza has historically been a hotspot of drug resistance (e.g. pyrimethamine, chloroquine, and SP), surveillance needs to be continued to detect future changes in parasite sensitivity to ACT.