Mapping the spatial distribution of fossil geothermal manifestations and assessment of geothermal potential of the Tangyin rift, Southeast of Taihang Mountain in China
Loading...
Date
2022
Journal Title
Journal ISSN
Volume Title
Publisher
Springer Nature
Abstract
The spatial prediction of geothermal sites along the southeast side of Taihang Mountain in the Tangyin rift is a critical goal in the development of renewable energy resources in cities such as Hebi in Henan province, which has significant potential for geothermal energy production due to the existence of deep faults and Cenozoic volcano. The study aimed to delineate areas with high geothermal manifestations for detailed geothermal exploration and well-test drilling. To define favorable zones for geothermal potentiality, multi-source datasets were chosen to generate evidence thematic layers that demonstrate the distribution of geothermal anomalies such as geologic maps, structural maps, Land Surface Temperature maps (LST), and hydrothermal mineral alterations maps. The remote sensing and Geographical Information System (GIS) approaches were integrated to map fossil geothermal manifestations and appraise the promising geothermal zones from Landsat 8 OLI/TIRS and Advanced Spaceborne Thermal Emission and Reflection Radiometer-Digital Elevation Model (ASTER-DEM) dataset using the Analytic Hierarchy Process (AHP), which is one of the Mult-criteria Decision Making methods. Results show LST values ranging from 22.6°C to 45.4°C, with the highest values found along the faults and volcanic areas. The hydrothermal alteration minerals discriminated from band ratios of 4/2, 6/5, and 6/7 for iron oxide, ferrous minerals, and clays reveal the presence of high amount of montmorillonite and illite minerals along the faults and volcanoes which are related to hot fluid circulation from subsurface. Structural analysis shows that the major structural trend follows the NNE Tangdong and Tangxi faults, with high density on the west side of the Tangxi fault where there is good exposure of outcrop but less fault density on the east side due to sedimentation in a low land which may conceal geological structures. Lastly, all the thematic layers of geothermal factors were reclassified, ranked, and integrated by the weight overlay logic model based on the influence of geothermal suitability to map potential areas for geothermal resources whereby 5 zones were obtained ranging from very poor to very good. The promising potential sites are mostly found along the highly deep structures of the major Tangxi fault crosscutting the permeable lithology of carbonate rocks and around the Hebi volcanoes. The distribution of hot springs and geothermal wells of the Hebi field were correlated and verified against the potential geothermal anomalies map. The overall integrated method proposes an advanced technique for designing the Tangyin rift’s exploration plan and development actions for geothermal resources utilization, which can be used for exploration of any unveiling geothermal potential sites.
Description
Abstract. Full text article available at https://doi.org/10.1007/s11629-022-7329-2
Keywords
Geothermal potential, Fossil, Fossil geothermal, Fossil geothermal manifestation, Tangyin rift, Taihang Mountain, China, Remote sensing, GIS, Global Information System, Geological structures, Alteration minerals, Land surface temperature
Citation
Mahwa, J., Li, D. J., Ping, J. H., Leng, W., Tang, J. B., & Shao, D. Y. (2022). Mapping the spatial distribution of fossil geothermal manifestations and assessment of geothermal potential of the Tangyin rift, Southeast of Taihang Mountain in China. Journal of Mountain Science, 19(8), 2241-2259.